
Pars Tec
Hooshmand

We don’t just build
technology — we design
and execute it intelligently.

Team Five Aio Learn's

Team Name:

Seyed Amir Arsalan Tayebi

Honors: First and second

place winner of the Iranian

Artificial Intelligence

Competition and second

place winner of the Iranian

Artificial Intelligence Ideas

Competition and a plaque of

appreciation from the

American International

Inventions Organization

GCISR and gold medal

winner of the French Bright

Expo Competition

Age: 15 years old

Education: Trained in

website development and

artificial intelligence at

Aiolearn Academy

Nazanin Bakhtiari
Age: 15
Specialization: AI Development,

Website Design & Development

Training: Aioleasssrn Academy

Honors:

Gold Medalist from the European

Inventors Organization (AEI)

Silver Medalist from Bright Expo

Competitions, France

Bronze Medalist from

1Idea1Word Competitions,

Türkiye

st Place in Creativity &

Innovation Competitions

(Artificial Intelligence Category

and Place in Creativity &

Innovation Competitions

(Industry Category)

Arman Damirchilou
Age: 15

Education: Currently in 10th

grade

 Honors: Diploma of Honor

(France), Bronze Medal

(Turkey), 2nd place in the

Artificial Intelligence

Competition in Iran,

participant and ranked in the

Computer Science and

Artificial Intelligence

Olympiad

Skills: Proficient in C++,

Unity, Blender

Specialization: Web Design,

UI/UX, AI at Aiolearn

Academy

Sajad Sharafi

Degree: Master of

Bioinformatics

Honors: Holder of the

1nd,2nd and 3rd place in

AI and website design

competitions in Iran -

Gold medalist in French-

Bronze medalist in

Türkiye competitions

Age: 30 Training:

Trained in website

development and design

& Artificial Intelligence

at Aiolearn academy

Team Leader

Team Members:

Team Members:
Our team entered this competition with the goal of tackling all the challenges, both in web development and artificial

intelligence. Through continuous effort and teamwork, we successfully completed all 8 projects.

Throughout this journey, we held numerous meetings to ensure that every team member contributed their ideas and

expertise, allowing us to overcome obstacles and move closer to our objectives. This collaborative approach played a

crucial role in our success.

Among all the projects we completed, each holds its own unique value, but Project 3: Emotion Painter (AI) and

Project 4: Smart Productivity Camera (AI) stand out as our most remarkable and inspiring achievements.

We invested significant effort and resources into these two projects—not only because of their technical complexity

and challenges, but also due to the distinctive appeal and excitement they brought to our team.

Ultimately, through dedication and teamwork, we achieved all our goals and successfully overcame every challenge.

This competition was far more than just a test of skills; it was a valuable opportunity for personal and collective

growth, deep learning, and the manifestation of creativity and innovation.

Artificial Intelligence Challenges:

1.Saving the Ecosystem with AI.

2.Virtual Avatar with Your

Personality.

3.Emotion Painter.

4.Smart Productivity Camera.

1_Saving the Ecosystem
withAI(AI)
In the near future, global agricultural
systems operate based on weather,
soil, and water resource data.
Governments have asked you to build
a model that predicts which regions
are at high risk of severe drought.
Data:
• A set of climate data (temperature,
precipitation, humidity)
• Water resource data and the
cultivated area of each region
Task:
• Design a model in Python (using
scikit-learn or TensorFlow) to predict
drought
• Build a simple dashboard using
Streamlit or Gradio to display regions
at risk

To support decision-making, we

also created an interactive

Streamlit dashboard to visualize

high-risk areas, enabling authorities

to take preventive actions

proactively.

Our Team’s Solution to the Severe Drought Prediction Challenge

Our team has developed an advanced AI-powered system designed to predict the

risk of severe drought across different regions. This system leverages climate data

— including temperature, precipitation, and humidity — combined with water

resource information and cultivated land area for each region. Using this data, we

built machine learning models capable of forecasting drought risk levels.

Brief Description of the predict
Method
The predict method takes the input data
(such as temperature, precipitation,
humidity, water resources, and more),
calculates additional drought-related
features in the create_features step —
including the temperature-to-humidity
ratio, aridity index, and water stress index
— then scales the data and runs it through
the selected model (default: ensemble).

The output includes:
•Drought Risk Level (high / moderate /
low)
•Probability for each class

•Model Confidence for the prediction

2. Virtual Avatar with Your
Personality (AI)
Challenge goal:
Design an AI system that can:
 • Build a digital avatar that simulates your
appearance and voice
• Naturally respond to questions and sentences
as if you were conversing yourself • Be able to
connect to websites or social media platforms
to act as your digital representative
Suggested technologies:
 • Voice cloning: to create a user-like voice (e.g.,
using models like VITS or ElevenLabs) •
Character LLM fine-tuning: to mimic the user's
thinking style and speaking manner (e.g., fine-
tune a large language model like LLaMA or GPT
based on personal conversation data) • Avatar
animation: to create animated avatars (e.g.,
using Unreal Engine or Avatar SDK)
Rules and output:
 • The output must be a visible and audible
virtual avatar (video or interactive environment)
• The avatar must respond to at least 10 simple
questions, and the answers must match the
user’s style • The avatar’s appearance and voice
should be as realistic and simulated as possible

Our Team’s Virtual Avatar Solution

For this challenge, our team developed a virtual avatar system that simulates

Arman’s appearance and voice, responding to questions in his personal style. We

used Three.js for 3D avatar rendering (including lip and eye animations), speech

synthesis for natural-sounding voice output, and OpenAI for intelligent,

Arman-profile-based responses.

The backend was built with FastAPI to handle both voice and chat interactions. The

avatar is capable of answering at least 10 simple questions.

Key Function Related to the Challenge

The most important function in this project is generate_response from the AIEngine class in

server.py.

What it does:

•Performs sentiment analysis on the user’s message.

•Constructs a system prompt containing detailed traits of Arman’s personality.

•Sends the conversation history to GPT-4.

•Produces a natural, personalized reply so the avatar can think and speak like Arman.

This function from avatar.js is responsible for

animating the avatar’s lip movements to match spoken

phonemes, making the virtual avatar’s speech look

more realistic. It iterates over the morph targets (which

control facial shapes), first reduces all existing

influences by multiplying them by 0.7 for a smooth

fade-out, and then boosts the specific viseme (mouth

shape) for the current phoneme to 0.8, ensuring natural

transitions during conversations.

3. Emotion Painter (AI)
Challenge goal:
Build an AI system that:
• Receives user input (text sentence or audio
file) and analyzes the emotions present in it
• Based on the identified emotions, creates a
digital image representing those feelings
Suggested technologies:
• Emotion classification: analyze emotions from
text or audio (e.g., using BERT for emotion
detection or audio models like Whisper or
Wav2Vec)
• Generative models: create images with DALL·E
or Stable Diffusion based on final text or
emotion tags
• Frontend interactive: build a simple app or
dashboard (Streamlit or Gradio) for testing and
displaying
Rules and output:
• The output must be a digital artwork that is
downloadable or shareable
• The system must be able to detect at least 5
different emotions (e.g., joy, sadness, anger,
fear, calmness) and generate an image
accordingly
• Input should be accepted from both text and
audio

Key Function Related to the Core Challenge and Brief

Explanation

The most critical function related to the core challenge is the
generate_emotion_based_image function in the app.py file. This
function is responsible for generating a digital image based on the
emotions detected from the user’s input (text or audio). Its workflow
involves first receiving the user’s dominant emotion, then using prompt
engineering to create a creative and emotion-aligned textual
description. Finally, it utilizes the DALL-E 3 API to produce an image
with an artistic style and color palette suited to the user’s emotion
(e.g., warm tones for happiness or cool tones for sadness). The function
includes a retry mechanism of up to three attempts in case of errors
and prepares the final image in Base64 format for display on the web or
download.

Moreover, the interactive and user-friendly Flask-based interface

ensures a seamless and delightful experience, allowing users to

effortlessly engage with the system, download their artworks, or

share them with others. The platform also incorporates

multimodal features such as facial emotion recognition (using

Mini-XCEPTION CNN) and emotion-based music generation (via

MIDIUtil), delivering a comprehensive and multisensory

experience for users.

A Comprehensive and Captivating Summary of Your Team’s Achievements in the Emotion Painter (AI)

Project

With unparalleled creativity and innovation, your team has designed and developed a pioneering AI platform called

“Emotion Painter (AI).” This groundbreaking system empowers users to express their deepest inner emotions

through text or audio inputs, receiving in return an extraordinary and fully personalized digital artwork that serves

as a mirror to their soul and feelings. Harnessing the most advanced AI technologies, including text-based emotion

recognition models like DistilRoBERTa and RoBERTa-base with over 94% accuracy, as well as powerful audio

models such as Wav2Vec2, the platform identifies a wide spectrum of human emotions—ranging from happiness,

sadness, anger, fear, and calmness to surprise and even love—with remarkable finesse and precision.

In the next stage, the platform employs cutting-edge image generation models like DALL-E 3 from OpenAI to create

artworks that not only resonate with the user’s emotional state but also leave a profound visual and emotional impact. From

vibrant, light-filled paintings for joy to melancholic images with cool, shadowy tones for sadness, each piece is meticulously

crafted with careful attention to color palettes, lighting, textures, and symbolic elements to narrate a unique visual story.

4. Smart Productivity Camera
Challenge goal:
Design an AI system that can:
• Analyze employee behavior in the
workplace through live video or images •
Detect different states (productive work,
leaving the workstation, sitting idle,
moving between desks, etc.)
 • Display analytical data in a dashboard
Suggested technologies:
• Computer Vision: to analyze video and
frames
• Pose Estimation: to detect body posture
(e.g., MediaPipe or OpenPose)
• Action Recognition: to detect activity
type from video (e.g., I3D or SlowFast) •
Dashboard frontend: to graphically display
results (e.g., Streamlit or Plotly Dash)
Rules and output:
• The output must classify each individual
in at least 3 different states
• The system should be able to process a
short video (30 seconds to 1 minute) and
generate an analytical report at the end
• The dashboard must show the
percentage of productive versus
unproductive time

Smart Productivity Camera (AI) – Project Overview
The Smart Productivity Camera (AI) is an intelligent system designed to monitor and enhance employee
productivity in workplace environments, developed by our team. Leveraging cutting-edge artificial
intelligence and computer vision, the system analyzes employee behavior through live video or images
and generates actionable insights to boost both productivity and security.

Our Team’s Achievements
We have built a comprehensive system utilizing YOLOv8 for object and person detection, MediaPipe Pose for body
posture analysis, and custom Action Recognition algorithms.
The system can identify at least seven distinct body states:
1-Productive work 2-Idle 3-Standing 4-Lying down 5-Resting 6-Moving between desks 7-Leaving the workstation
The system processes short video clips (30 seconds to 1 minute) and outputs interactive dashboard reports
showing the ratio of productive to unproductive time.

Core Feature: Posture & Activity Recognition
At the heart of the project lies body posture and activity detection.
By combining YOLOv8 for person detection and MediaPipe Pose for
extracting 33 body keypoints, we calculate joint angles and classify
activities with high accuracy. These activity metrics are logged for
detailed reporting and continuous tracking using PersonTracker
technology.
Key Function: MultiPersonProcessor.process_multiple_persons

The main processing function, located in app.py, is the engine of the

entire system:

•Input: A single frame from a video or image.

•Processing:

•Detects people via YOLOv8 and MediaPipe.

•Segments frames and tracks individual identities.

•Analyzes activities for authorized personnel.

•Output:

•Comprehensive reports containing the number of detected

individuals, processing time, and activity details — all visualized in

an interactive dashboard.

This parallelized process (up to 8 people simultaneously) ensures high

processing speed and accuracy, directly addressing operational

monitoring challenges.

1.Cyber Warehouse of Defective Robots

2.Smart City and Traffic Light Management

with Queue Algorithm

3.Hidden Path Decoder

4.Encrypting Messages as Visual Codes in

the Browser

Programming Challenges:

1. Cyber Warehouse of Defective
Robots
Challenge goal:
Using JavaScript and HTML/CSS, design a
visual system that places the robots as
rectangles with different sizes in a two-
dimensional grid, in such a way that:
• No two robots collide with each other
• The empty space between them is
minimized
• The robot data is received via a JSON
input Sample input (JSON):
 [{ "id": "robot_01", "width": 2, "height": 1 },
 { "id": "robot_01", "width": 2, "height": 1 }]

Rules and output:
• The output must be a web page that
displays the location of each robot in the
grid.
 • The x and y position of each robot in
the grid must be displayed.
 • The arrangement must fit in a 10x10
space (or larger depending on the number
of robots).

Our team developed a JavaScript-based warehouse management system for CyberCore,
visualizing defective robots as rectangles packed into a 2D grid via HTML canvas and CSS
for rendering.
We implemented a first-fit decreasing (FFD) bin packing algorithm to place robots
without overlaps, sorting them by height descending to minimize empty space.
Creativity shone in adding interactive drag-and-drop for manual repositioning, allowing
users to override auto-placement for custom optimization.
Innovation included dynamic grid expansion: starting at 10x10, it auto-resizes (e.g., to
20x20) if total robot area exceeds 80% capacity, ensuring scalability.
We parsed JSON input to extract robot dims, computed positions, and output x/y coords
overlaid on the visual grid.

This snippet handles core placement: sorts
robots, iterates to find fits, places them, and
expands grid if overflow—ensuring no collisions
and minimal waste in O(n^2) time, addressing
the problem’s optimization rules efficiently.

2. Smart City and Traffic Light
Management with Queue
Algorithm
Challenge goal:
Simulate a 4-way intersection in a smart city,
where you must manage the traffic lights using
JavaScript and queue algorithms and dynamic
decision-making, so
 that:
• Traffic is optimized
• Cars move based on a specific priority
• The system automatically schedules the lights
and decides which path should open. Story
scenario: You are responsible for designing the
digital brain of an intersection in the smart city
"Innoverse." In this city, cars enter the
intersection every few seconds and if the
signaling system is not proper, traffic gets
locked. In this challenge you must design a
system that can:
• Detect in real time which path has more
traffic.
• Decide which path should be open and the
others should stay red.
• Let the cars pass in order and based on
priority.
[h , h , h , 0 , h , h , h , h]
[h , h , h , 1 , h , h , h , h]
[0 , 0 , 1 , 4 , 1 , 1 , 0 , 0]
[h , h , h , 1 , h , h , h , h]
[h , h , h , 1 , h , h , h , h]

The project’s creativity lies in simulating a realistic urban environment by integrating external factors
like weather conditions (rain, fog, storm) that adjust light durations, emergency modes for special
vehicles (ambulance, police), and AI predictions for future traffic, elevating it beyond a basic queue
system.
The main innovation is the intelligent decision-making algorithm that calculates scores for each
queue based on length, vehicle priorities, wait times, and weather penalties, selecting the optimal
direction to maximize efficiency (up to 100%).

Our team designed a smart 4-way intersection traffic light system in the browser using
JavaScript, employing dynamic queues for each direction (north, south, east, west),
processing vehicles based on priority (normal, priority, emergency), and automatically
switching lights based on real-time traffic to prevent gridlock.

Brief explanation: This function computes a score for
each direction by summing priorities, wait time
bonuses, emergency boosts, queue length, and weather
penalties, then selects the highest-scoring direction to
optimize traffic flow and honor priorities.

The project also features a hacker-like terminal UI with
logs, console commands, and visual animations, making
the user experience engaging and educational.
Key code snippet: The calculateOptimalDirection()
function, which covers the challenge requirements
(detecting higher traffic, automatic path opening,
priority-based processing).

3. Hidden Path Decoder
The player can only try to find a correct
path from the green cell to the red cell by
clicking on cells, without clicking on
obstacles. But that’s not all: Main rule:
The participant must design a system in
the browser that:
1.Builds the map from a predefined two-
dimensional array (for example, a
JavaScript matrix where value 0 means
path, 1 means obstacle, 2 means start, 3
means end).
2.Allows the user to click on the cells and
build his/her path step by step.
3.After each click, the selected path is
shown in a special color (for example,
blue).
4.Finally, if the selected path:
o Has only passed through valid cells
o Has reached from the start point to the
end point
o Has not been repetitive
o And has not hit any obstacles
Otherwise, an error or rejection message
is displayed.

Players start from the green start point and build their path by clicking on cells, without hitting obstacles or

repeating cells. The selected path is displayed in blue.

The game is implemented in various levels: Beginner (12x12), Intermediate (15x15), Expert (18x18), Master

(20x20), tracking level (starting from- Players start at the green cell, clicking to build a blue path without hitting

obstacles or repeating cells.

1), number of moves, hints (3 available), and score.

Features include path reset, hints, and path check for validation (checking no repeats, no obstacles, reaching the

end).

If the path is valid, success is displayed; otherwise, an error message appears.

The grid is built from a two-dimensional JavaScript array (0: path, 1: obstacle, 2: start, 3: end).

Creativity: American theme with stars and stripes, emojis, and achievements like First Path, Speed Runner, No

Hints, Master Navigator to enhance engagement and motivate players.

Innovation: Integration of smart hint system, scoring based on speed and no hint usage, and dynamic validation after

each click, making the game challenging and educational.

Key code snippet (the path validation section that covers the

main rules of the problem, such as checking valid cells, no

repeats, no obstacles, and reaching the end):

Brief description: This function checkPath checks the

constructed path (array path). First it checks the length and

start/end, then it uses Set to detect repetitions, and on the path to

check for obstacles. It also checks the adjacency cells to ensure

step-by-step movement. If all the rules are met, the score is

updated and a success message is displayed. This section

implements the rules of the subject (crossing valid cells, no

repetitions, no possibility of reaching the end).

Our team built an interactive web game called “American Path Quest” based on discovering a path in a

grid network with specific rules. The game features a square grid (like a chessboard) where cells can be

free paths (white), obstacles (black), start point (green), or end point (red).

4. Encrypting Messages as Visual
Codes in the Browser
Main goal: Build a tool in the browser that has
two main functions:
1. Encrypt text to image The user enters text
(for example: HELLO). The system, using a
defined algorithm, converts it to an image
consisting of blocks (for example, squares with
specific colors or special positions). Each
character must be converted into a unique
graphical pattern. For example: H = red square
at the top left, E = blue circle in the center, and
so on.
2. Decrypt image to text The user can give the
image generated by the system back to the
system (or even "read" it by clicking on a graphic
map), and the system must reconstruct the
original text. Rules and limitations:
• Each character from A-Z must have a specific
"graphical pattern" (for example, a combination
of color + position or a special shape).
• These patterns must be dynamically
generated in the code, not pre-designed images.
• Only div, span, and CSS can be used.
• The decoding system must "read" the image
exactly based on these rules.

Cyrillic-like chars, numbers, and spaces to unique

emojis with quantum-inspired HSL colors based on

char codes, positions, and pseudo-quantum states

(amplitude, phase, spin via sin/phi calculations).

The UI features a Matrix-rain background, real-time

stats (complexity, security levels), QR sharing,

PNG/JSON export, and print. Decryption works via

direct data reversal or image upload with Canvas

pixel hue analysis. Creativity: Merges quantum

physics metaphors (entanglement, superposition)

with fun emoji visuals for an immersive, gamified

encryption experience. Innovation: In-browser

image decryption without libraries, dynamic

patterns without assets, and simulated complexity

matrix for adaptive “security,” going beyond basic
encoding to a thematic, interactive system.

Key code snippet for core encryption (text-to-
image) and display:
Brief explanation: This encrypts text by creating objects per

char with unique emojis (from map) and colors (HSL from

quantum calcs like sin-based amplitude). It renders the “image”

as CSS-styled divs in a grid, fulfilling dynamic pattern

generation for each A-Z char without pre-made images.

Decryption (linked code) reverses via hue mapping or data.

Our team built a browser-only Quantum Cipher Matrix tool that encrypts text

messages into dynamic visual “images” (grids of colored emoji blocks) and
decrypts them back, using JS, HTML, and CSS without backends. It maps A-Z,

 Visit Our Website

 sajjadsharafi.com/usa/innoverse.html

 Explore Our GitHub Repository

 github.com/ParsTechHooshmand

https://sajjadsharafi.com/usa/innoverse.html
https://sajjadsharafi.com/usa/innoverse.html
https://sajjadsharafi.com/usa/innoverse.html
https://sajjadsharafi.com/usa/innoverse.html
https://github.com/ParsTechHooshmand
https://github.com/ParsTechHooshmand
https://github.com/ParsTechHooshmand

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

